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Abstract

We prove that if p À lnn/n, then a.a.s. every subgraph of random bipartite graph

G(n, n, p) with minimum degree at least (1/2 + o(1))np is Hamiltonian. The range

of p and the constant 1/2 involved are both asymptotically best possible. The result

can be viewed as a generalization of the Dirac theorem within the context of bipartite

graphs. The proof uses Pósa’s rotation and extension method and is closely related

to a recent work of Lee and Sudakov.

MSC 2010: 05C80, 05C45.
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1 Introduction

An undirected graph G = (V,E) on n vertices is represented by the vertex set V with

|V | = n and edge set E. G is called bipartite if its vertex set V can be divided into

two disjoint sets (classes) V0 and V1 such that no two vertices within the same set are

adjacent. Bipartite graphs have interesting characteristics (e.g. contains no odd-length

cycles) and are widely used in computational sciences [1]. The random bipartite graph

model G(n, n, p) with 2n vertices is defined as follows (see e.g. [5])

Definition 1. Let n be a positive integer and 0 ≤ p ≤ 1. The random bipartite graph

G(n, n, p) is a probability space over the set of bipartite graphs on the vertex set V = V0∪V1

with |V0| = |V1| = n where each pair of vertices between V0 and V1 forms an edge randomly

and independently with probability p.

Here, we focus on finding general sufficient conditions for Hamiltonicity in G(n, n, p).

It is known that it is NP-complete to determine whether a Hamiltonian cycle exists in a
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graph [12]. A remarkable theorem of Dirac [7] asserts that every graph (bipartite or not)

on n vertices of minimum degree at least dn/2e is Hamiltonian.

Many classical graph properties can be naturally extended to the Erdős-Rényi random

graph model G(n, p) (see e.g. [5]). If a graph property holds for G(n, p) (or G(n, n, p))

with probability tends to 1 as n goes to infinity, then we say that this property holds

asymptotically almost surely (a.a.s.). The above Dirac’s theorem has recently been inves-

tigated in the context of random graphs [20, 11, 2, 3, 16]. For example, Sudakov and Vu

[20] proved that if p > (lnn)4/n, then a.a.s. every subgraph of G(n, p) with minimum

degree at least (1/2 + o(1))np is Hamiltonian. In [16], Lee and Sudakov further proved

the following result.

Theorem 1.([16]) If p À lnn/n, then a.a.s. every subgraph of G(n, p) with minimum

degree at least (1/2 + o(1))np is Hamiltonian. Furthermore, both the range of p and the

value of the constant 1/2 are asymptotically best possible.

Here, we show the following theorem analogously for bipartite graphs.

Theorem 2. For any ε > 0, there exists a constant C = C(ε) such that for p ≥

C lnn/n, a.a.s. every subgraph of G(n, n, p) with minimum degree at least (1/2 + ε)np is

Hamiltonian. Furthermore, both the range of p and the constant 1/2 are asymptotically

best possible.

Frieze [10] proved the following limit distribution for G(n, n, p).

Theorem 3.([10]) If p = (lnn + ln lnn + cn)/n, then

lim
n→∞

P(G(n, n, p) is Hamiltonian) =


0 cn → −∞

e−2e−c
cn → c

1 cn → ∞

This result implies that the range of p in Theorem 2 is asymptotically tight. To see

the value of the constant 1/2 is also asymptotically best possible, we consider a random

bipartite graph with vertex set V = V0∪V1, and further partition the vertex classes V0 and

V1 into two equivalent parts, respectively. We obtain V0 = V00 ∪ V01 and V1 = V10 ∪ V11

with all the four subsets having size n/2. Now deleting all the edges between V00 and

V11, and those between V01 and V10. This results in removing roughly half of the edges

incident with each vertex in the random bipartite graph and leaving it disconnected. Thus

the graph is no longer Hamiltonian.
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Note that the average degree for each vertex in G(n, n, p) is np. Hence, our Theorem

2 indeed complements Theorem 3 in the sense of fault tolerance issues, namely allowing

deletion of some edges incident to each vertex while preserving the Hamiltonicity. This

property is very appealing in many information and computer systems [19]. Towards

deriving the Hamiltonicity of G(n, n, p) we apply Pósa’s rotation-extension method ([17,

Chapter 10, Problem 20] and [18]) to bipartite graphs with some necessary modifications.

Since our argument closely follows the line of [16], we will only sketch/outline the similar-

ities and focus on the differences.

2 Preliminaries

Throughout this work all bipartite graphs we consider are defined on the same vertex set

and have the same partition, i.e., V = V0 ∪ V1 and |V0| = |V1| = n, unless mentioned

otherwise. Denote with Kn,n the complete bipartite graph on V . For v ∈ V , let deg(v) be

the degree of vertex v. Given a vertex set X ⊆ V , denote with eG(X) (or simply e(X))

the number of edges in X. Similarly, for two vertex sets X and Y , denote by eG(X,Y ) (or

e(X,Y )) the number of edges {x, y} with x ∈ X and y ∈ Y . We use NG(X) (or N(X))

to denote the neighborhood of set X in a graph G, namely, the vertices of V \X which are

adjacent to some vertex in X.

The following lemma is a useful concentration inequality (a.k.a. Chernoff’s inequality)

for independent random variables (see e.g. [6]).

Lemma 1. Let ε > 0. Let X1, · · · , Xn be independent random variables with

P(Xi = 1) = pi, P(Xi = 0) = 1 − pi.

Define the sum X =
∑n

i=1 Xi and its expectation E(X) =
∑n

i=1 pi. We have

P(X ≤ E(X) − ε) ≤ e−ε2/2E(X),

and

P(X ≥ E(X) + ε) ≤ e
− ε2

2(E(X)+ε/3) .

By using the above concentration inequality, we can readily obtain the following two

results on random bipartite graphs.
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Lemma 2. For any ε > 0, there exists a constant C such that for p ≥ C lnn/n a.a.s.

G = G(n, n, p) contains e(G) = (1 + o(1))n2p edges, and for any v ∈ V , (1 − ε)np ≤

deg(v) ≤ (1 + ε)np.

Lemma 3. Let ω(n) be any function which tends to infinity with n. If p ≥ lnn/n, then

a.a.s. for every two subsets of vertices X and Y belonging to different vertex classes in

G(n, n, p),

e(X,Y ) = |X||Y |p + o(|X||Y |p + ω(n)n).

The next lemma presents some expansion properties for random bipartite graphs in

the sense of fault tolerance. Results of the same flavor for Erdős-Rényi random graphs

can be found in e. g. [16, 20, 14].

Lemma 4. For any 0 < ε < 1/4, there exists a constant C such that for p ≥ C lnn/n

a.a.s. G = G(n, n, p) has the following property. For every subgraph H of maximum degree

at most (1/2 − 2ε)np, the graph G′ = G\H satisfies:

(i) For any X ⊆ V , |X| ≤ (lnn)−1/4p−1, |NG′(X)| ≥ (1/2 + ε)np|X|,

(ii) For any X ⊆ V , n(lnn)−1/2 ≤ |X| ≤ εn, |NG′(X)| ≥ (1/2 + ε)n,

(iii) G′ is connected.

Proof. Let H and G′ be defined as stated in the Lemma 4.

To show (i) we only need to prove that a.a.s for any X ⊆ V , |X| ≤ (lnn)−1/4p−1,

|NG(X)| ≥ (1 − ε)|X|np, (1)

as this would imply that

|NG′(X)| ≥ |NG(X)| −
(

1
2
− 2ε

)
np|X| ≥

(
1
2

+ ε

)
|X|np.

It remains to show (1). Fix a set X ⊆ V with |X| ≤ (lnn)−1/4p−1. Decompose X as

X = X0∪X1 such that X0 ⊆ V0 and X1 ⊆ V1. For any vertex v ∈ V \X, let Iv = 1[v∈NG(X)]

be the indicator. Then we have Y := |NG(X)| =
∑

v∈V1\X1
Iv +

∑
v∈V0\X0

Iv. Since by
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definition max{|X0|p, |X1|p} ≤ |X|p = o(1), we obtain

E(Y ) =
∑

v∈V1\X1

P(Iv = 1) +
∑

v∈V0\X0

P(Iv = 1)

= (n − |X1|)(1 − (1 − p)|X0|) + (n − |X0|)(1 − (1 − p)|X1|)

= (n − |X1|)(1 + o(1))|X0|p + (n − |X0|)(1 + o(1))|X1|p

= (1 + o(1))n|X|p − 2|X0||X1|p.

Note that |X| ≤ (lnn)−1/4p−1 ≤ n/(C(lnn)5/4) and |X0||X1| ≤ (|X|/2)2. Inserting these

estimations into the above equation we derive that E(Y ) = (1+o(1))n|X|p. Using Lemma

1, we can bound the probability

P(Y ≤ (1 − ε)|X|np) ≤ P
(
Y ≤ E(Y ) − ε

2
E(Y )

)
≤ e−

ε2

8
E Y = e−

ε2

8
(1+o(1))|X|np = n−C′|X|

for some C ′ sufficiently large. Taking the union bound over all X similarly as in [16,

Proposition 2.5] gives our conclusion.

To show (ii) we first show that a.a.s. for any disjoint pair of sets X = X0 ∪ X1 and

Y = Y0 ∪ Y1 with Xi, Yi ⊆ Vi, i = 0, 1, n(lnn)−1/2 ≤ |X| ≤ εn, |Y0| ≥ n − |X0| − a,

|Y1| ≥ n − |X1| − b and a + b ≤ (1/2 + ε)n, a, b ≥ 0, we have

eG(X,Y ) ≥ (1 − ε)(|X0||Y1| + |X1||Y0|)p (2)

≥ (1 − ε)(n|X| − 2|X0||X1| − b|X0| − a|X1|)p

≥ (1 − ε)
(

n|X| − |X|2

2
− |X|

(
1
2

+ ε

)
n

)
p

= (1 − ε)
(

n

2
− εn − |X|

2

)
|X|p

>

(
1
2
− 2ε

)
n|X|p. (3)

Indeed, to prove (3) it suffices to prove the first inequality (2). Let X and Y be a fixed

pair of sets as defined above. It follows from the expectation E(eG(X,Y )) = |X0||Y1|p +

|X1||Y0|p and Lemma 1 that

P(eG(X,Y ) < (1 − ε)(|X0||Y1| + |X1||Y0|)p) ≤ 2e−
ε2

3
(|X0||Y1|p+|X1||Y0|p)

≤ 2e−
Cε2

3 ( 1−4ε
2−2ε)n(ln n)1/2

¿ 2−4n.
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But there are at most 24n possible choices of X and Y . Taking the union bound yields

our assertion.

Next, we condition on the event that (3) holds. Assume that there exists a set X ⊆ V

with n(lnn)−1/2 ≤ |X| ≤ εn which has less than (1/2 + ε)n neighbors in G′. Therefore,

there exists a set Y = Y0 ∪ Y1 satisfying Y0 ⊆ V0, Y1 ⊆ V1, |Y0| ≥ n − |X0| − NG′(X1),

|Y1| ≥ n − |X1| − NG′(X0) and NG′(X1) + NG′(X0) ≤ (1/2 + ε)n such that Y is disjoint

from X and there are no edges between X and Y in G′. Furthermore, using (3) we obtain

0 = eG′(X,Y ) ≥ eG(X,Y ) −
(

1
2
− 2ε

)
np|X| > 0,

which is a clear contradiction.

To show (iii) we condition on the event that both (i) and (ii) hold. Now assume that

G′ is disconnected. We have a set X = X0 ∪ X1 with X0 ⊆ V0 and X1 ⊆ V1, and X

induces a connected component in G′. From (i) we see that |Xi| ≥ (np/2)(lnn)−1/4p−1 =

n(lnn)−1/4/2 for i = 0, 1. And then from (ii) we know that |Xi| > n/2 for i = 0, 1.

Hence we have |X| > n. Let Y = V \X and we know that Y also contains a connected

component. Therefore, |Y | > n and thus 2n = |V | = |X| + |Y | > 2n, a contradiction. 2

3 Proof of Theorem 2: rotation and extension

In this section we establish our main result Theorem 2 by applying a dramatic tool:

rotation and extension method [18]. This technique and its variants have been intensively

developed in finding long paths and cycles in the random graph setting, see e. g. [16, 3, 9,

13, 11, 15, 4]. When treating it in bipartite graphs, more attention should be paid simply

because some edges are forbidden and thus can not be used to “extend” the path.

Consider a connected bipartite graph G = (V,E) with V = V0∪V1 and |V0| = |V1| = n.

Let l be an odd number and P = (v0, · · · , vl) ⊆ Kn,n be a path on V , which is not

necessarily a subgraph of G. Consider the following two situations:

• If {v0, vl} is an edge of G, we can use it to close P into a cycle. We change a notation

P ′ := P .

• If {v0, vi} is an edge of G for some i < l, we can rotate P , by breaking the edge

{vi−1, vi}, to a new path P ′ = (vi−1, · · · , v0, vi, vi+1, · · · , vl) which is also of length l
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Figure 1: Rotating an odd-length path (v0, v1, · · · , vl) in a bipartite graph.

in G∪ P (see Fig. 1). Now, if the edge {vi−1, vl} ∈ G, we can use it to close P ′ into

a cycle.

Now that G is connected, either G ∪ P ′ is Hamiltonian or there exists a longer path (not

necessarily having odd length) in G ∪ P ′ (hence extending P ′).

Following the idea of [16] we will show that random bipartite graph G(n, n, p) contains

two subgraphs, one of which takes the role of rotation and the other of which takes the

role of extension.

Definition 2. Let δ > 0. A connected bipartite graph G = (V,E) has property REB(δ)

if for every odd-length path P ⊆ Kn,n (not necessarily a subgraph of G) either

• there exists a path longer than P in G ∪ P ;

or

• there exists a set SP ⊆ V (P ) with |SP | ≥ δn such that for any vertex v ∈ SP , there

exists a set Tv ⊆ V (P ) with |Tv| ≥ δn such that for any w ∈ Tv, there exists a path

from v to w in G ∪ P over V (P ), which is of the same length of P .

Definition 2 roughly means that if G satisfies REB(δ), then every short odd-length path

is extendable and every long odd-length path can be rotated in a number of ways. The next

result shows that we can find a subgraph of G(n, n, p) which has property REB(1 + 2ε).

Proposition 1. For any 0 < ε < 1/4, there exists a constant C such that for p ≥

C lnn/n a.a.s. G = G(n, n, p) has the following property. For every subgraph H of
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maximum degree at most (1/2 − 2ε)np, the graph G′ = G\H satisfies REB(1 + 2ε).

Proof. Let C be large enough so that the assertions of Lemma 2 and Lemma 4 hold a.a.s..

Let H and G′ be defined as stated in Proposition 1. It follows from Lemma 2 and Lemma

4 (iii) that G′ has minimum degree at least (1 − ε)np − (1/2 − 2ε)np = (1/2 + ε)np and

it is connected. Consider an odd-length path P = (v0, · · · , vl). Without loss of generality

we let v0 ∈ V0 and vl ∈ V1. Suppose that there does not exist a path longer than P in

G′ ∪ P . We want to show that the second condition in Definition 2 holds.

We first show that there exists a set SP,0 ⊆ V0 ∩ V (P ) with |SP,0| ≥ (1/2 + ε)n such

that for any v ∈ SP,0, there exists a set Tv,1 ⊆ V1∩V (P ) with |Tv,1| ≥ (1/2+ε)n such that

for any w ∈ Tv,1, there exists a path from v to w in G′∪P over V (P ), which is of length l.

Indeed, we can construct the set SP,0 iteratively exactly in the same way as Steps 1 and

2 in [16, Lemma 3.2]. We sketch the procedure briefly as follows. Let X(0) = {v0}. By

using Lemma 4 (i), (ii) we can show recursively that |X(i)| ≥ (np/4)i and for any v ∈ X(i)

there exists a path of length l in G′ ∪ P over V (P ) connecting v to vl. We can get sets

X(t), X(t+1) and X(t+2) satisfying |X(t)| = max{1, (lnn)−1/4p−1}, |X(t+1)| = n/(lnn)1/2

and |X(t+2)| ≥ n/4. According to the construction in [16], each vertex in X(i) is obtained

by i rotations (breaking i edges of P ) and what’s more, X(i) ⊆ V0 ∩ V (P ) for all i since

X(0) = {v0} ⊆ V0. Consider X(t+3) obtained by another round of rotation. Calculating

the number of edges incident to X(t+2) which we need to remove gives [16, Lemma 3.2,

Step 2] ∣∣∣X(t+2)
∣∣∣ (

1
2
− 2ε

)
np ≥

∣∣∣X(t+2)
∣∣∣ ∣∣∣V0\X(t+3)

∣∣∣ p + o(n2p).

(We remark that Lemma 3 will be needed here.) Hence, we obtain |X(t+3)| ≥ (1/2 + ε)n.

Set SP,0 = X(t+3). Now, for each v ∈ SP,0 there exists a path of length l over V (P )

connecting v to vl. Since vl ∈ V1, for each such path we perform the same procedure as

above by letting X(0) = {vl}, we obtain a set Tv,1 ⊆ V1 ∩ V (P ) with |Tv,1| ≥ (1/2 + ε)n

such that for any w ∈ Tv,1, there exists a path of length l connecting w to v in G′∪P over

V (P ).

Next, we show that there exists a set SP,1 ⊆ V1 ∩ V (P ) with |SP,1| ≥ (1/2 + ε)n such

that for any v ∈ SP,1, there exists a set Tv,0 ⊆ V0∩V (P ) with |Tv,0| ≥ (1/2+ε)n such that

for any w ∈ Tv,0, there exists a path from v to w in G′ ∪ P over V (P ), which is of length

l. Indeed, since vl ∈ V1, this statement can be shown by constructing the sets iteratively

with X(0) = {vl} analogously as above.
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Finally, we set SP = SP,0 ∪ SP,1 and Tv = Tv,0 ∪ Tv,1. The proof is then complete. 2

The next proposition shows that we actually can find a small subgraph of G(n, n, p)

which satisfies REB(1 + 2ε).

Proposition 2. For any ε > 0 and 0 < δ < 1, there exists a constant C such that for

p ≥ C lnn/n a.a.s. G = G(n, n, p) has the following property. For every subgraph H of

maximum degree at most (1/2 − 3ε)np, the graph G′ = G\H contains a subgraph with at

most 2δn2p edges satisfying REB(1 + 2ε).

Proof. Take C large enough such that for p ≥ δC lnn/n, the assertions of Lemma 2 and

Proposition 1 hold a.a.s.. Let p′ = δp and let Ĝ be a thinning of G by taking each edge of

G independently with probability δ. Therefore, Ĝ is equivalent to G(n, n, p′) in the sense

of edge distribution.

Ĝ is said to be good if it contains at most 2n2p′ = 2δn2p edges and all subgraphs

obtained by deleting at most (1/2−2ε)np′ edges incident to each vertex have REB(1+2ε).

It follows from Lemma 2 and Proposition 1 that the probability that Ĝ is good is 1−o(1).

Let H be defined as stated in Proposition 2. We may argue exactly as in [16, Lemma 4.1]

to derive that there exists a choice of Ĝ such that Ĝ\H ⊆ G′ becomes the subgraph that

we are looking for. 2

Definition 3. Let δ > 0 and a bipartite graph G1 satisfy property REB(δ). A bipartite

graph G2 is said to complement G1, if for every odd-length path P ⊆ Kn,n (not necessarily

a subgraph of G1) either

• there exists a path longer than P in G1 ∪ P ;

or

• there exists v ∈ SP and w ∈ Tv such that {v, w} is an edge of G1 ∪ G2, where SP

and Tv are defined as in Definition 2.

The following result can be proved similarly as [16, Proposition 3.4].

Proposition 3. Let δ > 0. For every G1 satisfying REB(δ) and G2 complementing

G1, the union graph G1 ∪ G2 is Hamiltonian.

The next proposition shows that random bipartite graph can take the role of extension

by complementing all its small subgraphs satisfying property REB(1 + 2ε).
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Proposition 4. For any ε > 0, there exist constants δ and C such that for p ≥ C lnn/n

a.a.s. G = G(n, n, p) has the following property. For every subgraph H of maximum degree

at most (1/2− ε)np, the graph G′ = G\H complements all subgraphs R ⊆ G with at most

δn2p edges satisfying REB(1 + 2ε).

Proof. Let G be the collection of all subgraphs of G obtained by deleting at most (1/2−

ε)np edges incident to each vertex. The probability P that the proposition fails can be

estimated as [16, Lemma 3.5]

P ≤
∑

R∈REB(1+2ε)

|E(R)|≤δn2p

P(some G′ ∈ G does not complement R|R ⊆ G) · P(R ⊆ G). (4)

Let R be a fixed subgraph satisfying REB(1+2ε) and P ⊆ Kn,n be a fixed odd-length

path. A coarse upper bound of the number of such paths is (2n)(2n)! (which will be enough

for our purpose). Since R ∈ REB(1 + 2ε), we obtain sets SP and Tv (for every v ∈ SP )

as specified in Definition 2. We choose an arbitrary subset S′
P ⊆ SP with |S′

P | = εn.

For every v ∈ S′
P , define T ′

v = Tv\S′
P . Hence, |T ′

v| ≥ (1 + ε)n. Fix a vertex v ∈ S′
P .

Let X =
∑

w∈T ′
v
1[{v,w} is an edge in G]. A key ingredient towards bounding the probability

P(some G′ ∈ G does not complement R|R ⊆ G) in (4) is to estimate P(X < (1/2)np) (i.e.,

the probability that the number of neighbors of v in T ′
v is less than (1/2)np) [16, Lemma

3.5]. By using Lemma 1 and noting that (1 + ε)np ≤ E(X) ≤ (1 + 2ε)np, we obtain

P
(
X <

np

2

)
≤ P (X − E(X) < −εnp)

≤ P
(
X − E(X) < −ε

2
E(X)

)
= e−c(ε)np,

where c(ε) > 0 is some constant depending on ε. Reasoning as [16, Lemma 3.5] we have

the estimation

P(some G′ ∈ G does not complement R|R ⊆ G) ≤ 2n(2n)!e−c′(ε)np,

where c′(ε) > 0 is another constant depending on ε. The other terms in (4) can be bounded

similarly as in [16, Lemma 3.5] and then we finally get P = o(1) which completes the proof.

2

Putting the above pieces together we are ready to show our main result.

Proof of Theorem 2. Let C be large enough and δ be small enough so that G(n, n, p)

with p ≥ C lnn/n a.a.s. satisfies Lemma 2 with ε/2 instead of ε, satisfies Proposition 4
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with ε/6 instead of ε, and satisfies Proposition 2 with δ/2 instead of δ and ε/6 instead of

ε.

Lemma 2 implies that G(n, n, p) has maximum degree at most (1 + ε/2)np. Hence, it

suffices to prove that for each subgraph H with maximum degree at most (1 + ε/2)np −

(1/2 + ε)np = (1/2 − ε/2)np, the graph G(n, n, p)\H is Hamiltonian.

Let H be such a graph. It follows from Proposition 2 that there exists a subgraph

of G(n, n, p)\H with at most δn2p edges satisfying REB(1 + ε/3). Proposition 4 then

indicates that G(n, n, p)\H complements this subgraph. By Proposition 3 we see that

G(n, n, p)\H is indeed Hamiltonian, which concludes the proof. 2

4 Concluding remarks

In this paper, we showed that if p À lnn/n, then a.a.s every subgraph of G(n, n, p) with

minimum degree at least (1/2 + o(1))np is Hamiltonian. Taking into account of the limit

distribution for Hamilton cycles given in [10], a direction worthy of further investigation

would be obtaining a Dirac-type result near the threshold lnn/n. Another perhaps more

demanding open problem is to study this issue for random intersection graphs Gn,m,p,

which also possess underlying bipartite structures. The threshold for Hamiltonicity in

Gn,m,p is recently established in [8].
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